

Unearthing the soil microbiome towards sustainable use of soil resources

Mohammad Bahram

Senior lecturer, Dept of Ecology, SLU

PlantLink Day, 2023-Oct-05

Outline

- I. Soil microbes and methods to study their diversity
- II. Patterns and determinants of soil microbial diversity
- III. Plant-soil interactions
- IV. Path forward

Soil is home to a rich microbial life that is poorly known

Soil is home to a diverse microbial life that is poorly known

 1000s species of microbes in one gram of soil

Prokaryotes

Bacteria

Eukaryotes

Fungi

Archaea

Protists

Photos by <u>CDC</u> on <u>Unsplash</u>

> 90% of microbial species remain uncultured.

Identification of new species and clades that may play key functions

Bahram et al. 2018 Environ Microb Rep

Key microbes involved in ecosystem processes

Rare but key microbes for ecosystem functions

Bahram et al. 2022 Nat Commun

Patterns and determinants of soil and plant-associated microbial diversity

Global aboveground vs soil biodiversity patterns

Mammals, birds, amphibians, plants

Soil bacteria, fungi, fauna

Cameron et al. 2019 Conserv Biol

Pole-to-pole connections of soil microbes

frontiers in Ecology and Evolution

> Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change

doi: 10.1111/ele.12587

LETTER

Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic

Environmental filtering as a key mechanism shaping the diversity and distribution of soil microbes

Climate warming and land-use intensification may increase N₂O emission

Bahram et al. 2022 Nat Commun

Lessons from studies on plant-soil interactions

- Changes in carbon and nutrient conditions
- Direct interaction with microbes

Mycorrhizal types

Global distribution of EcM vs AM associations

% of global aboveground vegetation biomass

Soudzilovskaia et al., 2019. Nat. Commun.

Mycorrhizal associated nutrient economy (MANE) framework

Closed and conservative nutrient cycling

Phillips et al., 2013. New Phytol.

Plant-soil feedbacks in AM vs EcM systems

Tedersoo et al. 2021 Science

Plant-soil feedbacks in AM vs EcM systems

Bahram et al. 2020 New Phyt

Role of mycorrhizae in driving carbon storage under climate change

Plant biomass increases at the expense of soil carbon storage

Terrer et al. 2021 Nature

Path forward

A better understanding of the evolution and ecology of soil and root microbes in a changing environment towards improved:

- Plant health and production
- Soil carbon storage

A holistic view of ecosystems towards resilient ecosystems

eDNA

remote sensing

One-size does not fit all

Coppola, et al. 2021 Health Educ Care